UVnovo: A de Novo Sequencing Algorithm Using Single Series of Fragment Ions via Chromophore Tagging and 351 nm Ultraviolet Photodissociation Mass Spectrometry.
نویسندگان
چکیده
De novo peptide sequencing by mass spectrometry represents an important strategy for characterizing novel peptides and proteins, in which a peptide's amino acid sequence is inferred directly from the precursor peptide mass and tandem mass spectrum (MS/MS or MS(3)) fragment ions, without comparison to a reference proteome. This method is ideal for organisms or samples lacking a complete or well-annotated reference sequence set. One of the major barriers to de novo spectral interpretation arises from confusion of N- and C-terminal ion series due to the symmetry between b and y ion pairs created by collisional activation methods (or c, z ions for electron-based activation methods). This is known as the "antisymmetric path problem" and leads to inverted amino acid subsequences within a de novo reconstruction. Here, we combine several key strategies for de novo peptide sequencing into a single high-throughput pipeline: high-efficiency carbamylation blocks lysine side chains, and subsequent tryptic digestion and N-terminal peptide derivatization with the ultraviolet chromophore AMCA yield peptides susceptible to 351 nm ultraviolet photodissociation (UVPD). UVPD-MS/MS of the AMCA-modified peptides then predominantly produces y ions in the MS/MS spectra, specifically addressing the antisymmetric path problem. Finally, the program UVnovo applies a random forest algorithm to automatically learn from and then interpret UVPD mass spectra, passing results to a hidden Markov model for de novo sequence prediction and scoring. We show this combined strategy provides high-performance de novo peptide sequencing, enabling the de novo sequencing of thousands of peptides from an Escherichia coli lysate at high confidence.
منابع مشابه
Comprehensive de Novo Peptide Sequencing from MS/MS Pairs Generated through Complementary Collision Induced Dissociation and 351 nm Ultraviolet Photodissociation.
We describe a strategy for de novo peptide sequencing based on matched pairs of tandem mass spectra (MS/MS) obtained by collision induced dissociation (CID) and 351 nm ultraviolet photodissociation (UVPD). Each precursor ion is isolated twice with the mass spectrometer switching between CID and UVPD activation modes to obtain a complementary MS/MS pair. To interpret these paired spectra, we mod...
متن کاملDe novo sequencing of tryptic peptides derived from Deinococcus radiodurans ribosomal proteins using 157 nm photodissociation MALDI TOF/TOF mass spectrometry.
Vacuum ultraviolet photodissociation of peptide ions in a matrix assisted laser desorption ionization (MALDI) tandem time-of-flight (TOF) mass spectrometer is used to characterize peptide mixtures derived from Deinococcus radiodurans ribosomal proteins. Tryptic peptides from 52 proteins were separated by reverse-phase liquid chromatography and spotted onto a MALDI plate. From 192 sample spots, ...
متن کاملPeptide de novo sequencing using 157 nm photodissociation in a tandem time-of-flight mass spectrometer.
It has previously been shown that photodissociation of tryptic peptide ions with 157 nm light in a matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF) mass spectrometer generates an abundance of x-type ions. A peptide de novo sequencing algorithm has now been developed to interpret these data. By combination of photodissociation and postsource decay (PSD) spectra, th...
متن کاملInvestigation of VUV Photodissociation Propensities Using Peptide Libraries.
PSD does not usually generate a complete series of y-type ions, particularly at high mass, and this is a limitation for de novo sequencing algorithms. It is demonstrated that b(2) and b(3) ions can be used to help assign high mass x(N-2) and x(N-3) fragments that are found in vacuum ultraviolet (VUV) photofragmentation experiments. In addition, v(N)-type ion fragments with side chain loss from ...
متن کاملComplexity and scoring function of MS/MS peptide de novo sequencing.
Tandem mass spectrometry (MS/MS) has become a standard way for identifying peptides and proteins. A scoring function plays an important role in the MS/MS data analysis. De novo sequencing is the computational step to derive a peptide sequence from an MS/MS spectrum, normally by constructing the peptide that maximizes the scoring function. A number of polynomial time algorithms have been develop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 88 7 شماره
صفحات -
تاریخ انتشار 2016